skip to main content


Search for: All records

Creators/Authors contains: "Chen, Fu-Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process. 
    more » « less
  2. We report observations of photopolymerization driven phase-separation in a mixture of a photo-reactive monomer and inorganic nanoparticles. The mixture is irradiated with visible light possessing a periodic intensity profile that elicits photopolymerization along the depth of the mixture, establishing a competition between photo-crosslinking and thermodynamically favorable phase-separating behavior inherent to the system. In situ Raman spectroscopy was used to monitor the polymerization reaction and morphology evolution, and reveals a key correlation between irradiation intensity and composite morphology extending the entire depth of the mixture, i.e. unhindered phase-separation at low irradiation intensity and arrested phase-separation at high irradiation intensity. 3D Raman volume mapping and energy dispersive X-ray mapping confirm that the intensity-dependent irradiation process dictates the extent of phase separation, enabling single-parameter control over phase evolution and subsequent composite morphology. These observations can potentially enable a single-step route to develop polymer–inorganic composite materials with tunable morphologies. 
    more » « less
  3. A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications. 
    more » « less